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Section 2.6: Directional derivatives and the
gradient

We learn:

e What is the directional derivative of a
function f: RA3 -> R?
(It could be f: RAn ->R)

e The connection between the gradient and
the directional derivative.

e The gradient points in the direction of
greatest increase of f .

e The gradient points perpendicular to level
sets.

e Using this to compute tangent planes etc.




The directional derivative The book sticks to n=3. When n=2

_ we can draw the graph of f:
Suppose we have a function f: RAn ->R.

Let v be a vector of length 1 and a any vector
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What if v wasn’t a unit vector?
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The directional derivative is the slope of the
graph in direction v .




Theorem 12 Let f: RAn->R, a and v
vectors in RAn with v of length 1.

The directional derlvatlve equals
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Proof. We can use the chain rule.
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Example: Compute the directional derivative of

f(x,y) = Xx\2 + xy
in the direction of (3/5,4/5). ~L) 2’)
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Quick question:
Is of / 6x any of the following?

a. a unit vector
b. a directional derivative, in direction x /

c. adirectional derivative, in direction y




Theorem 13 If grad f(a) #0 then grad f (a)
points in the direction along which fis increasing
the fastest.
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Theorem 14 If S is a level set of f defined
by f(a) =k then grad f (a) is perpendicular
to S.
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This means we can compute tangent planes
to surfaces, because grad f is a normal
vector



Like gn 4. You are walking on the graph of
f(x,y) = xyA2 + y + 3 standing at the point
(2,1,6). Find an (x,y)-direction you should
walk in to stay at the same level.

Example. Compute the tangent plane to the
surface xN\2 + yA2 + z =7 at the point

(2,1,2).
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