Pre-class Warm-up

Do you remember what the gradient of a function is?

Can we do $\operatorname{grad} f$ if
a. $f \cdot R \rightarrow R \wedge 2$? Another why to ask this.
a. $f: R \rightarrow R \wedge 2$? e.g. $f(t)=(t, t \wedge 2)$ Another whey to ask Find grad f.
b. $f: R \wedge 2->R$? e.g. $f(s, t)=s+t^{\wedge} 2$
c. $f: R \wedge 3->R$? e.g. $f(x, y, z)=x y+z$

Soluturu to $b, \nabla f=\left[\begin{array}{c}\frac{\partial f}{\partial s} \\ \frac{\partial f}{\partial t}\end{array}\right]=\left[\begin{array}{c}1 \\ 2 t\end{array}\right]=\left(\begin{array}{ll}1 & 2 t\end{array}\right]$
Second question: is there a difference between grad f and DE (The derivative oof I)?
a. They are pretty much the same
b. They are different but sone similarities
". Completely afferent.

$$
D f=\left[\begin{array}{ll}
\frac{\partial f}{\partial s} & \frac{\partial f}{\partial t}
\end{array}\right]
$$

Section 2.6: Directional derivatives and the gradient

We learn:

- What is the directional derivative of a function $f: R \wedge 3->R$? (It could be $\mathrm{f}: \mathrm{R} \wedge \mathrm{n} \rightarrow \mathrm{R}$)
- The connection between the gradient and the directional derivative.
- The gradient points in the direction of greatest increase of f.
- The gradient points perpendicular to level sets.
- Using this to compute tangent planes etc.

The directional derivative
Suppose we have a function $f: R \wedge n->R$. Let v be a vector of length 1 and a any vector in $R \wedge n$.
The directional derivative of f at a in the direction v is

$$
\lim _{t \rightarrow 0} \frac{f(a+t v)-f(a)}{t} \quad \begin{array}{ll}
\text { Note } \\
& \|t v\|=t \\
& \text { if } t>0
\end{array}
$$

What if v wasn't a unit vector?
We get confused.

The book sticks to $\mathrm{n}=3$. When $\mathrm{n}=2$ we can draw the graph of f :

The directional derivative is the slope of the graph in direction v.

Theorem 12 Let $f: R^{\wedge} n->R$, a and v vectors in $R \wedge n$ with v of length 1 .
The directional derivative equals

$$
\operatorname{Df}(a) \stackrel{\not)^{a t n} \times \operatorname{mul}}{ }=\operatorname{grad} f(a) \bullet v .
$$

good notation dot product
If these are written out fully it looks like:

$$
=\left.\frac{\partial f}{\partial x}\right|_{a} v_{1}+\left.\frac{\partial f}{\partial y}\right|_{a} v_{2}+\left.\frac{\partial f}{\partial z}\right|_{a} v_{3}
$$

Proof. We can use the chain rule.
Let $c(t)=a+t v$ so the dir.
der is $\left.\frac{d f \cdot c}{d t}\right|_{t=0}=D f(c(0)) \cdot D c(0)$
$=\left[\left.\left.\left.\frac{\partial f}{\partial x}\right|_{a} \quad \frac{\partial f}{\partial y}\right|_{a} \quad \frac{\partial f}{\partial z}\right|_{a}\right] c^{\prime}(t)=D f(a) v$
$c^{\prime}(t)=V$

Example: Compute the directional derivative of $f(x, y)=x^{\wedge} 2+x y$ in the direction of $(3 / 5,4 / 5)$. af $a=(1,2)$ solution $D f=[2 x+y x]=[41,1]$ at a Answ. $[4,1]\left[\begin{array}{l}3 / 5 \\ 4 / 5\end{array}\right]=\frac{12}{5}+\frac{4}{5} \approx 3 \frac{1}{5}$

Quick question:
Is $\partial \mathrm{f} / \partial \mathrm{x}$ any of the following?
a. a unit vector
b. a directional derivative, in direction x
c. a directional derivative, in direction y

Theorem 13 If $\operatorname{grad} f(a) \neq 0$ then $\operatorname{grad} f(a)$ points in the direction along which f is increasing the fastest.

Proof The slope in direction v is $\nabla f(a) \cdot v=\|\nabla f(a)\|\|v\| \cos \theta$ $\theta=$ angle between r and $\nabla f(a)$
This biggest when $\theta=0$
The slope is biggest when v points in the direction of $\nabla f(a)$

Theorem 14 If S is a level set of f defined by $f(a)=k$ then $\operatorname{grad} f(a)$ is perpendicular to S .

Proof. If v points in the direction of a level set the slope of f in direction v is O This means
$\nabla f(a) \cdot v=0$, so v and $\nabla f(a)$ are perpendicular.

This means we can compute tangent planes to surfaces, because grad f is a normal vector

Example. Compute the tangent plane to the surface $x^{\wedge} 2+y^{\wedge} 2+z=7$ at the point $(2,1,2)$.
Solution. The surface is a level set of the function $f(x, y, z)=x^{2}+y^{2}+z$

$$
\left.\nabla f=\left(\begin{array}{lll}
2 x & 2 y & 1
\end{array}\right)=\left(\begin{array}{lll}
4 & 2 & 1
\end{array}\right) \text { at } \begin{array}{ll}
2 & 1
\end{array}\right)
$$

The plane has equation $4 x+2 y+z=D$.
Substitute $(x, y, z)=(2, d, 2)$
to get $8+2+2=D=12$
Ansi. $4 x+2 y+z=12$

Like qu 4. You are walking on the graph of $f(x, y)=x y^{\wedge} 2+y+3$ standing at the point $(2,1,6)$. Find an (x, y)-direction you should walk in to stay at the same level.
Solutur. $\nabla f=\left(y^{2}, 2 x y+1\right)$
When $(x, y)=(2,1)$
$\nabla f(2,1)=(1,5)$
This is peri. to the level direction!
solve $\quad\left(v_{1}, v_{2}\right) \cdot(1,5)=0$
AnSi $(5,-1)$

